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The Gaussian inequality is proven for multicomponent rotators with nega- 
tive correlations between two spin components. In the case of one-com- 
ponent systems, the Gaussian inequality is shown to be a consequence of 
Lebowitz' inequality. For multicomponent models, the Gaussian inequality 
implies that the decay rate of the truncated correlation (or Schwinger) 
functions is dominated by that of the two-point function. Applied to field 
theory, these inequalities give information on the absence of bound states 
in the A(~I 2 + ~b22) 2 model. 

K E Y  W O R D S  : Classical rotators ; cor re la t ion inequal i t ies.  

1, i N T R O D U C T I O N  

Since it was in t roduced  in Ising spin systems by Newman/TM the Gauss ian  
inequal i ty  had  led to some interest ing appl ica t ions  in stat ist ical  mechanics  
and quan tum field theory.  This  inequal i ty  states that  the corre la t ion  (or 
Schwinger) funct ions o f  an Ising system or  a &~ theory  are bounded  by 
the corre la t ion  funct ions o f  a Gauss ian  (free) system with the same co- 
variance.  

Thus,  the Gauss ian  inequal i ty  gives bounds  on the n-point  funct ions in 
terms o f  a b o u n d  on the two-po in t  funct ion.  ~t~ I t  also al lows one to 
recover  results o f  F e l d m a n  <6~ and  Spencer  <22~ on the absence o f  even b o u n d  
states of  energy < 2 m  in a one-phase  q~r theory.  ~18~ The special case of  the 
Gauss ian  inequal i ty  for  the four -po in t  funct ion was discovered also by  
Lebowi tz  ~4~ as a consequence o f  a general  inequal i ty  [(2.5a) in Ref. 14] tha t  
we shall  call  Lebowi tz '  inequali ty.  This special case was appl ied  to ~4 in 
recent  works  o f  G l i m m  and  JalTe. r 

Unt i l  now it was not  known  whether  the Gauss ian  inequal i ty  was valid 
for  mu l t i componen t  spin systems (and field theories).  We show in this pape r  
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(Sections 2 and 3) how to derive the Gaussian inequality for multicomponent 
models from the generalized Griffiths inequalities introduced by Monroe (lv) 
for two-component models and extended to three- and four-component 
models by Dunlop (2~ and Kunz et al. ~3~ 

On the other hand, the proof  of the Gaussian inequality by Newman (18~ 
as well as that by Sylvester (24) rely on combinatorial methods which are valid 
for Ising spin-l/2 systems. Then, by the classical Ising approximation, (~2~ the 
inequality is extended to 4, ~ and other models. This class of models is quite 
close to the one for which Lebowitz' inequality is valid. ~'23~ However, except 
for the four-point function, no relationship between the two inequalities was 
known. Using exactly the same method as with the multicomponent systems, 
we show (Sections 2 and 3) that the Gaussian inequality is really a consequence 
of Lebowitz' inequality. 

In Section 4, we show that in the one-phase region (at zero external field) 
of a (q~ + ~22) 2 theory or for the plane rotator model, the truncated correla- 
tion (or Schwinger) functions are dominated by the two-point function. This 
leads to an extension to two-component models of the spectral results of 
Spencer (22~ (,, absence of even bound states") based on Lebowitz' inequality 
and of those of Simon (2~ ("coupling to the first excited state") based on the 
F K G  inequality. Finally, the results of Mac Bryan and Spencer (~6~ on the 
decay rate of the spin-spin correlation function in the two-dimensional plane 
rotator model carry over to all the truncated correlation functions) 

2. THE G A U S S I A N  I N E Q U A L I T Y  

The basic system in which we are interested is the following: we consider 
a family of D-dimensional random variables {s~ls ~ ~ RD}~A indexed by the 
finite set A. Their joint probability distribution is 

dt*A = Z 2 1  exp/3( ~ Jijs~.sj + , ~  h#~) I--[ dye(s,) (1) 

where v,(s~) = p,(i[sill) dsi and are such that 

f exp(b[[si[[ 2) dp~(f[s~[[) < oo ~ ~ (2) Vb R, Vi A 

ZA is the normalization factor such that ~A(N D'IAI) = 1. 
This model is often considered in statistical mechanics and occurs as the 

lattice approximation of some field theories. (21) 

2 F. Dunlop has informed us that he has obtained very similar results (Theorems 2.1, 
4.1, and 4.2 and their corollaries) in the cases D = 1 and 2, with slightly more general 
single-spin measures. His methods, which are quite different from ours, also give an 
extension of the Lee-Yang theorem. (2s> We thank F. Dunlop for communicating his 
results to us before publication. 
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However,  instead o f  considering this model  directly, we shall state the 
theorems for measures that  already satisfy certain correlation inequalities. 
This will make the proofs  conceptually simpler. We shall also mention the 
cases where the model (1) is known to satisfy these inequalities. 

Nota t ions  
1_ is a countable set. 
f2 = (Eg)~. 
For  each i c U_, s~ denotes the function on f2 that  assigns to each con- 

figuration its value at i. 
We denote by q~, t~ the first two components  o f  s,. 
We also use the following functions: 

x, = (q, + t~)/~/2 (3) 

y~ = (q~ - tO/~/-} (4) 

Given a finite family of  elements o f  IL indexed by the set A, {i~li~ ~ [L}~A, 
we denote for any B _~ A 

qB = 1--[ q~ 

and similarly for tB, xB, yn. I f  B = ~ ,  qB = 1. 
M is the set o f  finite families of  elements of  11_; each o f  these families is 

denoted by its set of  indices. 
Given a set E, we denote by a tilde the complementat ion in E (E). 
We introduce now the correlation inequalities that our  measures have 

to satisfy. 

D e f i n i t i o n  2.1. A measure on f2 has negative correlations i f  the expec- 
tations with respect to this measure satisfy, VA, B E M. 

(i) 0 ~< (qAtB) <~ (qA)(t~) (5) 

(ii) 0 ~< <XAyB) <~ <XA)(yB) (6) 

R e m a r k s .  (1) The  measure (1), with n_ = A, is known to have negative 
correlations when D = 2, 3, 4 provided that, Vi, j ~ A, J,j >1 O, 

hi = (hi1, hi2, 0, 0), h~ 1, h, 2 /> 0, hil i> h~2 

and provided that  v, satisfy certain conditions/2,~8~ For  example, the following 
measures satisfy these conditions: 

dv,(s,) = 3(lls~l I - a)ds~, a > 0 (7) 

dv,(s,) = exp(-aI]s,I] 4 + blls, ll ~) Ms,, a > O, b ~ ~ (8) 
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(2) If  D = 1, let s~ = q~ and consider/zA({q~}) x /~A({h}) as a measure 
on (R2) IAI. If  J~j, h~ are nonnegative and if v~ are even measures such that/~A 
satisfies Lebowitz' inequality, (1~'2a) then/xA x /~A has negative correlations. 
Indeed, the relation (i) in Definition 2.1 is then an equality because of the 
factorization and relation (ii) is just Lebowitz' inequality. The positivity 
follows from the first Griffiths inequality. 

D e f i n i t i o n  2.2. A measure on fl is (q, t)-symmetric if, for all A, 
B ~ M ,  

(qAtB} = (qBtA} (9) 

In the model (1), this imposes the additional restriction, Vi ~ A, h,1 = h~2 = h,. 
We call h~ the externalfield. 

Def in i t i on  2.3 (see Ref. 18). Apair-partition of A, A ~ M, is a partition 
of A, {B~}i~l, such that if [A I is even, IB~I = 2, Vi ~ L Or, if [AI is odd, 
[B A = 1 for a singlej and [B d = 2, Vi r  

Given a measure/z on f~ and A ~ M, 

P.(A) = I-I  <qB,  (lO/ 
pER(A) B~ep 

where R(A) is the set of pair-partitions of A. (The subscript t~ will be omitted 
if unnecessary.) 

T h e o r e m  2.1. If the measure t~ on fl has negative correlations and is 
(q, 0-symmetric, the expectations with respect to tx satisfy, VA, B ~ M, 

(qAtB) <. P,(A)P,(B) (11) 

The proof of this theorem relies on the following combinatorial lemma: 

L e m m a  2.1. L e t f b e  a real-valued function on M such that, VD ~ M, 

f (D) = ~ 1-~ f(B,) (12) 
pER(D) Bi~p 

Then, i f A e M ,  IA I = 2nor ]A]  = 2n + l a n d k  ~< n, 

,sl=z f (B) f (B ) = f(A) (13) 
B~_A; 

We mention the following particular case of Theorem 2.1. 

C o r o l l a r y  2.1. Under the assumptions of Theorem 2.1, Vi, j, k, l ~ k, 

(i) (q~qjqkq~) <~ (q~qj)(q~q~) + (q~qk)(qjq~) + (q~q~)(qjqk) (14) 

(ii) (q~qjq~) <~ (q~)(qjq~) + (q~)(q~q~) + (q~)(q~q~) (15) 
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Remarks. (1) Relation (11) contains the Gaussian inequality for D = 
1, (187 which is thus a direct consequence of Lebowitz' inequality since 
/zA x tzA is by definition (q, t)-symmetric. 

(2) When hi = h2 = 0, (14) is the special case of the Gaussian inequality 
due to Lebowitz mentioned in the introduction. On the other hand, (15) 
resembles but is not as strong as the GHS inequality (z~ for D = 1. 

3. PROOF OF THE GAUSSIAN INEQUALITY 

We start with the following result. 

P r o o f  o f  L e m m a  2.1. Fix a term in the rhs of (12) with D = A and 
call it T. Let Pz be the partition associated with T. The partition p~ is a 
product o f f (B3,  where B~ is a two-element set for all i, except possibly one, 
and for this one, IBi] = 1. The number of factors in T with ]Bi] = 2 is 
therefore n, since [A I = 2n or 2n + 1. 

Let us compute how many times T will appear if we develop in all the 
terms of (13)f(B)  and f (B)  according to (12). Now, T will appear as many 
times as we can choose k elements in p~, with [Bd = 2; that is, exactly (D 
times. Indeed, choose B~, i = 1 ..... k, B~ ~p~, and let C = 1,_)~=1 B~. Since 
]C I = 2k, C occurs in the lhs of (13) and for this C, the development of  
P(C)P(C)  gives Texactly once. Since the factor (~) is the same for all the terms, 
the result follows. [ ]  

P r o o f  o f  T h e o r e m  2.1. Since, by Definitions 2.1 and 2.2, (qAtB) <~ 
(qA)(tB) = (qA)(qB), it is sufficient to prove 

(qA) <~ P(A),  VA ~ M 

We proceed by recurrence on ]A I. Since the result is obvious for ]A] = 1 
and 2, we may assume it is true for all B ~ M with [B] < [A I. We distinguish 
two cases, depending on whether ]A I is even or odd. 

(i) ]A[ = 2n + I. By (3) and (4) we have 

q, = (x, + y,)/V'2 (16) 

t, = (x, - y ,) /q-2 (17) 

So we can express qa in terms of x~, y~: 

(qn) = 2-1AImc~ZA (YcXo) <~ 2-1AI}2( ~ (Yc)(Xc) + (XA) ) (18) 

[C [ e v e n  

The inequality comes from the negative correlations and the fact that, writing 
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Yc in terms of q~ and t~, (q, t)-symmetry implies that <yc> = 0 if [C[ is odd. 
Now, for C e M ,  ICI even, ICl < Ial, 

(Yc) = 2 -'c'/z ~ (-) '~ ' ( t~q~) 
E ~ C  

Since (teq~) >1 O, we can drop the terms with IEI odd: 

(Yc,) <~ 2 -'c' 'z ~ (tE)<qg) <~ 2 -'c''2 ~ e(Ele(ffO 
E~_C E c - C  

I~1 e v e n  [E[ e v e n  

Here, we have used the recurrence hypothesis (I CI < IAI) �9 Using Lemma 2.1, 

P ( E I P ( E )  = = e ( c )  = 
E ~ C  k = O  E-=C = 

[E I even IE[ =2/c  

Therefore 
(Yc) <~ P(C) (19) 

Considering xc, C ~ M, ICI odd, ICl < I A[, we have 

(Xc) = 2 -Ict/2 ~_, (qltr) 
I c_C  

= 2"2 -tel/2 ~ (qlt~) by (q, 0-symmetry 

I/[ e v e n  

<<. 2.2-1cl/2 ~ (q~)(t~) by the negative 
1_=(7 

[II e v e n  correlations 

~< 2.2 -IcL/2 ~ P(I)P(i) by recurrence 
I ~ C  

tli  e v e n  

h:=O k 

= 21/2P(C) (20) 

by Lemma 2.1. 
Similarly for (xA) we get, since (IA[ - 1)/2 = n, 

(XA) <~ 2" 2-1At/2(qa? + 2"2 -IA!/2 ~ P(A) 
k = l  

= 2-'~+~/2(qA) + 2-'~+~/2(2 '~ -- 1)P(A) (21) 

Combining (18)-(21), we have 

(qA> <~ 2-1AI/2121/2, ~*CuA ~-" P(C)P(C) + 2-n+~/2(2 n - 1)P(A) + 2-'~+1/2(qa)] 
L IC[ e v e n  
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Using again Lemma 2.1, we get 

2 2 " -  1 2 ~ - - 1  2 " -  1 
22. (qA> <~ T P(A) + ~ -  P(A) 

2 2r/' - -  1 

22,~ e(A) 

(ii) I AI = 2n 

(qA)= 2-"(~ ~ A  (xCye) + (XA) + <YA)) 

<. 2-=(~aA(XC>(ye> + (XA) + (YA)) (22) 
\ [C I e v e n  

(Xc)(ya) = 2 -~ ~ ~, (-)'~l(qEtg)(qz @ (23) 
Z r  o ~ C ~ A  g c - c  
lcl  e v e n  lcl  e v e n  I = - 0  

(in this sum E is the complement of E in C, and [ is that of I in C) 

~ r  E_c.C I = _ 0 
[C[ e v e n  E , / [ e v e n  

The last line comes from the fact that the terms in (23) with ]E], ]E[, II[, I/~[ 
odd are all negative (due to the factor (_)01) and that the sum over all the 
terms with ]E], ]E I odd and ]I[, [II even is exactly the opposite of the sum 
over the terms with IE[, ]E I even and ]I], [i[ odd; so these two sums cancel 
each other. 

Now, by recurrence and Lemma 2.1, the last sum is bounded by 

P(C)P(C) -- (2" - 2)P(A) 

I c ] even 

We have also that 

Therefore, 

and 

<XA) + <yA) <~ 2"2-~(~aA(qc)(to) + 2(qA)) 
\lCl even 

~< 2.2-'~[(2 '~ - 2)P(A) + 2(qa)] 

(qA) <<- 2-'~{( 2'~ -- 2)P(A) + 2-2-'~[(2 ~ -- 2)P(A) + 2(qA)]} 

2 2 " - 2 -  1 2 " - 2  2 ~ - 2  
22,~_~ (qA) < ~ P(A) + ~ P(A) 

2 2 n  - 1 22._7 2e( ) [] 

Remarks .  (1) Neglecting the terms with a minus sign ([E[ odd) in the 
proof may be making a rough estimate when there is a large external field. 
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However, this estimate cannot be improved for an arbitrary external field, 
since these terms vanish with the external field. 

(2) If  we keep the neglected terms in the proof, we get, for example, for 
the three-point function, 

(q~qjqk) < (q~)(qjqk) + (qj)(q~q~) 
+ (qk)(q, qJ) - {((q,)(qjtk) + (qy)(q,t~) + (qk)(q, ti) ) 

Since (q~tk) <~ (q,)(q~), this is still a weaker inequality than the GHS 
inequality, except if D = 1, where it is the GHS inequality 

((q,t~) = (q,)(qe)). 

(3) If, instead of considering (q, 0-symmetric measures, we let the field 
be in the q direction (i.e., h~ 1 = h~, h~2 = 0), we can get analogous bounds, 
for example, 

(q.4) <. P(A) if [A[ is odd 

(qA + tA) < 2P(A) if [A] is even 

In fact, this can be seen from the proof, since putting the field in the q 
direction amounts to interchanging the roles of (q,, h) and (x,, y~). 

(4) We see that the model (1) with D = 1 and h~ = 0 is also (x, y)- 
symmetric. Therefore Theorem 2.1 applies, if the negative correlation holds, 
not only to the spin variable q~, but also to the linear combinations x~, y~ 
[(3), (4)] of the duplicate variables: 

(xa)  ~< E 1--I (xB,> (24) 
peR(A) Br 

Remark 3 deals also with this case if h~ # 0. 

4. D O M I N A T I O N  BY THE T W O - P O I N T  F U N C T I O N  

The goal of this section is to show that if the external field is zero in the 
model (1), one can bound the decay rate of all the truncated correlation 
functions by that of the two-point function. 

De f in i t i on  4.1. A measure on f2 is totally symmetric if (i) VA, B ~ M, 
(qAtB) = 0 unless ]A I and ]B] are both even, and (ii) ( q A ) =  ( tA )=  
(XA)  = <YA)" 

In the model (1) this means that h, = 0 and D > 1. Our measure has 
to satisfy one more inequality: 

De f in i t i on  4.2. A measure on ~ satisfies Ginibre's inequality if, VA, 
B, C, D E M w i t h  IBI, [D[ even and e, = +_1, 

(qA(qB + eltB)qc(qD + e2tD)) >1 (qA(q~ + eltB))(qc(qD + e2tD)) (25) 
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This is an unusual formulation of Ginibre's inequality, (7) and should 
rather be considered as a consequence of Ginibre's inequality. (1,2) This 
inequality is known (2,3,v for the measure (1) with D = 2, 3, 4, J~j /> 0, 
hi = (h~ 1, 0, 0, 0), h~l /> 0, and v~ given by (7) or (8) if D = 3, 4 or by any 
measure satisfying (2) if D -- 2. 

Given a distance on k (usually Q_ = 7/~) and A, B ~ M, we denote by 

d(A, B) = inf{dist(ia, i~)ta ~ A, b e B} 

A v B is the disjoint union of A and B. Note that qAqu = qAVB" 

T h eorem 4.1. If  the measure tz is (q, t)-symmetric and has negative 
correlations, we have that, VA, B e M, 

(qAqB) -- (qA)(qB) <~ 21-(IAl+lm)/2 ~ (XoX~)(yCyo)  (26) 
C = - A ; D ~ B  Icl. ID1 oaa 

Theorem 4.2. Assume that /~ is a totally symmetric measure on ~2 
having negative correlations and satisfying Ginibre's inequality. Assume also 
that there exists a distance on lk and a nonincreasing func t ionfon  [0, or[ such 
that, u j e [1_, 

(q~q~) <~ f (d i s t ( i , j ) )  

Then, for all A, B, C, D ~ M there exist constants K, K' ,  K" depending only 
on [A t, [B[, [C[, [D[ such that 

(i) (qAtBqctD) ~ Kf2(d(A V B, C v D)) (27) 

if [A l, IB[, ICI, ]D I are odd; 

(ii) (qAtBqctD) <~ K ' f (d (A  V B, C V D)) (28) 

if IN[ and [CI (resp. IBI and [DI) are odd and IB[ and [DI (resp. I /I  and 
[C[) are even; and 

(iii) I(qAtBqctD) -- (qAtB)(qctD)] <~ K"f2(d(A v B, C v D)) (29) 

if ]A], IBI, [C], ]D] are even. 

Proof  of  T heorem 4.1. By the hypotheses 

(qAqB) >1 (qA)(qB) = (qA)(tB) >1 (qAtB) 

Therefore 

(qAqB) -- (qA)(qB) <~ (qA(qB -- tB)) 

= 21 -(IAI + ,m>/2 ~ (xaycxfiyD) 
C~_A.D~_B IDl'oae 
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We have only terms with [D I odd because of the minus sign in (qB - tB). 
Then, by (q, 0-symmetry, the only nonvanishing terms are those with [C 1 odd. 
The use of (x~ycxr, yD) <, (XeX~)(ycyD) concludes the proof. �9 

Proof  of  Theorem 4.2. 
(i) By Theorem 2.1, 

(qatsqctD) ~ P(A V C)P(B V D) 

Since ]A] and ]C I are odd, we have in each term of (10) applied to P(A v C) 
at least one factor (q~q~) with a e A and b e C. The same is true with 
P(B v D). So there is, in each term of the rhs a product of two factors that 
are bounded byf(d(A V B, C v D)) s incef is  nonincreasing and d(i~, ib) >~ 
d(A, C) >1 d(A v B, C v D). One can bound the other factors and the 
number of terms by a constant K. 

(ii) The proof is similar. In general in each term we have only one factor 
bounded byf(d(A v B, C v D)) since IA] and IC[ (or [B I and ]D[)are even. 

(iii) We first use Ginibre's inequality to reduce the problem to the 
variables q~. Indeed, one can show, (1'2~ using (25), that 

[(qAtBqctD) -- (qAtB)(qctD)[ <~ (qAq~qcqD) -- (qAqB)(qcqg) (30) 

We use Theorem 4.1 and the fact that/z is totally symmetric to bound the 
rhs of (30) by 

21-(IAI+iBI+iCI+IDi)/2 ~ (,qEqv)(q~q~') 
Ig~_AvB 
FcCvD 

IEI, IFI oda 

Since IA v B I and I C v  D I are even, I/~] and Iffl are odd. Application of 
Theorem 2.1 and the same method as in the proof of (i) concludes the 
proof. �9 

To conclude this paper, we discuss some applications based on the 
previous theorems and on results obtained elsewhere, a'~5'16'2~ 

Coro l l a ry  4.1. Let k = 7/2, with the usual distance, and consider the 
model given by (1), (7) with h~ = 0, J,j >i 0, translation invariant and such 
that J,j = 0 if d(i, j )  # 1. Then, Ye > 0, 3/30 such that V/3 > /30, the con- 
clusions of Theorem 4.2 hold for the translation-invariant equilibrium state 
of this model with the following function f :  f (x)  = x -(I-'~/2'~B. 

ProoL The form of f is taken from Ref. 16, where the estimate is made 
on the two-point function with periodic boundary conditions. Since it was 
shown in Ref. 1 that this model has a unique invariant equilibrium state, the 
corollary follows from Theorem 4.2. �9 

One can use Theorem 4.2 to derive differentiability properties of the 
free energy and of the correlation functions with respect to/3. In particular, 
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if the two-point function is exponentially decreasing with dist(i, j ) ,  uniformly 
in some/?-interval, the correlation functions and the free energy are C ~ in 
/? in the interior of this interval. 

The following result is an application to quantum field theory. For the 
terminology we refer to Ref. 21. 

Consider a field theory constructed (in two or three dimensions) with 
the interaction 2,(r + r 2 + a(r + r using (half-) Dirichlet or (half-) 
periodic boundary conditions. Let f2 be the physical vacuum, H the re- 
normalized Hamiltonian, and ~d the renormalized Hilbert space. Denote by 

the subspace of ~ generated by 

( I2I I-~I r162 are test functions; 
j = 1 ~ = 1 and l and n are evenj 

and denote by Wo the subspace of Ye ~ generated by 

( l-~ I ~  r162  , f l  are test functions) t 
j= 1 ~= 1 and l and n are oddJ 

Corollary 4.2. With the preceding definitions: 

(i) The vacuum is nondegenerate if and only if 

lim(r162 = 0 
y ~ o 0  

(ii) The spectrum of H lies outside ]0, m[ if and only if, Ve > 0, 

limexp[(m - e) ly]] <r162 = 0 

(iii) If  the spectrum of H lies outside ]0, m[, then the spectrum of H 
restricted to the subspace ~ @ Y~o lies outside ]0, 2m[. 

Proof. Given Theorem 4.2, the corollary follows from general argu- 
ments. Points (i) and (ii) extend results of Simon (2~ for one-component 
field theories and point (iii) extends a result of Spencer (22~ and Feldman56~ [ ]  

Apart from these corollaries, there exist other applications of the 
preceding theorems. We mention three of them: 

I. The "mass gap" m in Corollary 4.2 is nondecreasing with c~. This is 
because the two-point function is nonincreasing with cr, by Ginibre's in- 
equality. 

2. Ellis and Newman (s~ have shown that, when D = 1, the sign of 
Lebowitz' inequality is reversed in some models of the type (1) with certain 
single-spin measures v,. As a consequence of our method of proof, the sign 
of the Gaussian inequality (l 1) is also reversed for these measures, at least 
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in zero external  field. These " r e v e r s e d "  inequali t ies  also ho ld  for two- 
c o m p o n e n t  models  (Newman,  pr ivate  communica t ion) .  

3. I f  D = 1, hi = 0, and  the negative corre la t ions  (i.e., Lebowi tz '  
inequal i ty)  hold ,  Theorem 4.1 also gives, using (24), the domina t ion  by the 
two-po in t  funct ion and the absence o f  even b o u n d  states of  energy less than  
2m. (~8'22) Indeed,  <x~xj) = 2-1/2(q~qj). 
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